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Abstract: Deep learning and diagnostic applications in oral and dental health have received significant
attention recently. In this review, studies applying deep learning to diagnose anomalies and diseases
in dental image material were systematically compiled, and their datasets, methodologies, test
processes, explainable artificial intelligence methods, and findings were analyzed. Tests and results in
studies involving human-artificial intelligence comparisons are discussed in detail to draw attention
to the clinical importance of deep learning. In addition, the review critically evaluates the literature to
guide and further develop future studies in this field. An extensive literature search was conducted
for the 2019–May 2023 range using the Medline (PubMed) and Google Scholar databases to identify
eligible articles, and 101 studies were shortlisted, including applications for diagnosing dental
anomalies (n = 22) and diseases (n = 79) using deep learning for classification, object detection, and
segmentation tasks. According to the results, the most commonly used task type was classification
(n = 51), the most commonly used dental image material was panoramic radiographs (n = 55), and
the most frequently used performance metric was sensitivity/recall/true positive rate (n = 87) and
accuracy (n = 69). Dataset sizes ranged from 60 to 12,179 images. Although deep learning algorithms
are used as individual or at least individualized architectures, standardized architectures such as pre-
trained CNNs, Faster R-CNN, YOLO, and U-Net have been used in most studies. Few studies have
used the explainable AI method (n = 22) and applied tests comparing human and artificial intelligence
(n = 21). Deep learning is promising for better diagnosis and treatment planning in dentistry based on
the high-performance results reported by the studies. For all that, their safety should be demonstrated
using a more reproducible and comparable methodology, including tests with information about
their clinical applicability, by defining a standard set of tests and performance metrics.

Keywords: deep learning; dental anomalies and diseases; dental diagnostics; dental images;
convolutional neural network

1. Introduction

Today, although most oral and dental diseases have early diagnosis and treatment
opportunities with technological developments in oral and dental health, their global
increase cannot be prevented. According to the WHO Global Oral Health Status Report
(2022) [1], oral and dental diseases affect approximately 3.5 billion people worldwide.
Especially in low- and middle-income countries, there are not adequate services in the field
of oral and dental health due to the costs of diagnosis and treatment. As a result of this
situation, it is estimated by the WHO that three out of four people in low- and middle-
income countries are affected by oral and dental diseases [1]. The most common dental
diseases, especially dental caries, are periodontal diseases, edentulism, oral cancer, dental
anomalies, and cleft lip and palate diseases [1]. When efficient diagnosis and treatment
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are not provided for these diseases, it can cause various complications ranging from mild
discomfort to death.

In addition to clinical examination, dental imaging technologies play a critical role
in diagnosing oral and dental diseases. In Figure 1A, examples of some anomalies and
diseases associated with dental imaging techniques are given. The advanced level of
three-dimensional dental imaging technologies such as cone-beam computed tomogra-
phy (CBCT), magnetic resonance imaging, and ultrasound, especially two-dimensional
panoramic and periapical radiographs, has increased the success rate in diagnosis [2,3].
However, image-based dental diagnosis has some limitations. Image-based medical diag-
nosis is not objective as it depends on specialist experience and inter-observer variables.
The background is noisy on radiographs, and anatomical structures overlap. Computed
tomography has poor resolution compared to radiographs due to scattering from metallic
objects. Ultrasonography contains high levels of noise. These limitations make interpreting
images difficult and increase the rate of expert oversight and error.

Expert systems, aimed at assisting experts in managing images, formerly applied strict
rules and methods based on how experts think. In recent years, with the ease of accessing
data and the development of computers with faster processing power, artificial intelligence
(AI) technologies have advanced, and expert systems have evolved into data-oriented
AI applications. In particular, the increase in studies on the successful performance of
deep learning methods, especially in image-based diagnostic tasks where a diagnosis is
challenging, such as cancer [4], lung, and eye diseases [5,6], has increased interest in the
medical application of AI [7,8]. Recent literature reviews have acknowledged the success
of expert systems based on deep learning methods that compete with the performance
of experts in image-based dental diagnostic tasks, especially the research presented in
this article.

Deep learning is a form of machine learning that uses multilayer artificial neural
networks in a wide range of applications, from image, audio, and video processing to
natural language processing. Unlike traditional machine learning methods, deep learning
can learn these features simultaneously by automatically extracting features from raw data
symbols instead of learning with rules. In addition to these flexible structures, prediction
accuracy can increase according to the size of the data. The concept of deep learning was
first proposed by Hinton in 2006 as a more efficient version of multilayer artificial neural
networks [9]. The CNN architecture, which is the most commonly used deep learning
algorithm, is presented in Figure 1B. Since the emergence of deep learning, it has been
proposed for many applications in the field of oral and dental health, such as tooth classifi-
cation [10], detection [11] and segmentation [12], endodontic treatment and diagnosis [13],
periodontal problem tooth detection [14], oral lesion pathology [15,16], forensic medicine
applications [17,18], and classification of dental implants [19,20]. Considering the large
number of images obtained in the field of oral and dental health, the dependence of den-
tists on computer applications in the analysis of these images, and the improvement of
decision-making performance in a limited time, there seems to be excellent potential for
the future of deep learning applications.
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Figure 1. (A). Examples of dental anomalies and diseases on dental imaging techniques; a. Mesiodens
on panoramic radiographs [21], b. Apical lesions on periapical radiographs [22], c. Temporomandibu-
lar joint osteoarthritis on orthopantomograms [23], d. Missing tooth on cone beam computed
tomography [24], e. Dental caries on near-infrared-light transillumination [25], f. Dental caries on
bite viewing radiographs [26], g. Dental calculus and inflammation on optical color images [27], h.
Gingivitis on intraoral photos [28]. (B). Convolutional neural network architecture.

Several reviews of deep learning for oral and dental health have been published
recently. These studies have focused on specific research areas such as dental caries [29],
dental implants [30,31], forensic [32], endodontics [13], temporomandibular joint dis-
order [33], periapical radiolucent lesions [14], gingivitis and periodontal disease [34],
and dental informatics [35]. Other reviews have addressed deep learning issues in den-
tistry [36–40] and dental imaging [41,42]. However, a comprehensive review study on deep
learning methods used to diagnose dental diseases, including dental anomalies, has yet
to be conducted. This study aims to systematically review 101 related research articles
applying deep learning methods to diagnose dental anomalies and diseases.

• The essential contributions of this article can be listed as follows:
• This study is the first systematic review of dental anomalies and deep learning.
• This study includes 101 shortlisted research articles from Scholar and PubMed that

apply deep learning methods for diagnosing dental anomalies and diseases.
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• This review included variables such as the size of the dataset, the dental imaging
method, the deep learning architecture used for performance evaluation criteria, and
the explainable AI method.

• Unlike other reviews in the literature, in this review, studies comparing human-AI
performance among shortlisted research articles are discussed in detail, especially
statistical tests.

As per the workflow of the current article, Section 2 contains a research methodology
demonstration that includes the research question, information sources, eligibility criteria,
search strategy, selection process, data extraction, and analysis processes. In Section 3, the
dataset features of the studies included in the shortlist were synthesized by presenting
the findings, such as the deep learning method, performance metrics, and human-AI
comparison. In Section 4, the findings presented in the previous section are discussed with
emphasis on management implications, academic implications, literature shortcomings,
and suggested solutions. The problems and suggested solutions for increasing the clinical
utility of deep learning and the limitations of the current article are also included in this
section. Finally, in Section 5, potential research directions are finalized.

2. Material and Methods

This systematic review was conducted by referring to the PRISMA 2020 statement [43],
an updated guideline for reporting systematic reviews. The review question determining
the study’s eligibility criteria and search strategy is based on the PICO (problem/population,
intervention/indicator, comparison, and outcome) framework in Table 1.

Table 1. Definition of the research question within the framework of PICO.

Research
Question

What Are the Applications and Performance of Deep Learning for Diagnosing Dental
Anomalies and Diseases?

Population
Diagnostic medical images of patients with dental anomalies or disease (radiographs, CBCT,
intraoral images, near-infrared-light transillumination (NILT) images, optical color Images,

microscopic histopathology)

Intervention Deep learning-based models for diagnosis and clinical decision making

Comparison Expert diagnosis

Outcome
Predicted results that can be measured with performance metrics (accuracy (ACC), sensitivity (SEN),

specificity (SPEC), Area Under the Curve (AUC), Matthews Correlation Coefficient (MCC),
Intersection over Union (IoU), Positive/Negative Predictive Values (PPV/NPV), etc.)

2.1. Information Sources and Eligibility Criteria

The systematic literature search was carried out by a reviewer by conducting an
extensive investigation in two different electronic databases, Medline via PubMed, and
Google Scholar, for studies published in the last five years (2019–May 2023). Google Scholar
is a comprehensive database of scholarly material from academic research, including
books, journal articles, conference reports, chapters, and theses. Google Scholar provides
free services, with no subscription required. Search results are ordered by relevance,
where it was published, authors, full-text match, and how often it is cited. Medline
is a database containing international publications on clinical medicine and biomedical
research. The PubMed database is an accessible interface service provided by Medline. The
research articles included in this systematic review were selected according to the eligibility
criteria below.

Inclusion criteria:

1. Articles published between January 2019–May 2023.
2. Articles on the diagnosis of dental anomalies or diseases.
3. Articles suggesting deep learning methods.
4. Articles created using a reference dataset on dental imaging techniques.
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5. Full-text research articles.
6. Articles written in English.
7. The article must contain detailed information about the dataset, methods, results, and

tests applied.

Exclusion criteria:

1. Articles on topics such as healthy tooth detection, tooth labeling/numbering, dental
implants, and endodontic treatment.

2. Articles that have applied other AI methods that do not include deep learning method-
ologies, such as classical machine learning.

3. Review articles and other types such as conferences, article abstracts, book chapters,
preprints, or non-full-text articles, even if it is a research article.

2.2. Search Strategy and Selection Process

Keywords combining techniques of interest (such as deep learning/CNN), image
materials (such as radiographs), and areas of interest (such as dental anomalies/diseases)
were used to navigate through articles. Medical Subject Headings (MeSH) of deep learning,
CNN, convolutional neural networks, oral, dental, tooth, teeth, anomalies, and diseases
were included. Included MeSH terms are combined with Boolean operators such as and/or,
and advanced settings of databases are used with selections such as inclusion date range,
publication types and language. The electronic search strategy applied to databases is given
in Table 2.

Table 2. Structure of electronic search strategies.

Database Search Strategy Search Date

Google Scholar
all: (“deep learning” OR “CNN” OR “convolutional neural network”)
AND (“oral” OR “dental” OR “tooth” OR “teeth”) AND (“anomalies”

OR “diseases”)
26 May 2023

Medline/PubMed

(“deep learning”[All Fields] OR “CNN”[All Fields] OR “convolutional
neural network”[All Fields]) AND (“oral”[All Fields] OR “dental”[All

Fields] OR “tooth” [All Fields] OR “teeth” [All Fields]) AND
(“anomalies” [All Fields] OR “diseases” [All Fields])

25 May 2023

The articles included in this systematic review were selected in two stages. In the first
stage, a reviewer evaluated the articles according to the relevance of the titles and abstracts
related to our research topic. In the first stage, studies with titles and abstracts unrelated to
oral and dental health that could not be full-text articles, such as abstracts, were eliminated.
In the second stage, a second reviewer conducted a detailed examination according to the
eligibility criteria. During this examination, review articles, articles whose method was not
deep learning, and articles that did not focus on oral/dental anomalies or disease diagnosis
were excluded.

2.3. Data Extraction and Analysis

One reviewer performed the data extraction phase from the included studies. From
the included articles, the primary author, publication year, anomaly/disease for which
the diagnosis was intended, image type, number of images, primary performance metric
and outcome value, other measured performance criteria, and explainable AI method
data were obtained by reviewing detailed full texts. The shortlist presented in the article
was thoroughly reviewed and checked by a second reviewer (specialist dentist). Different
shortlists were made for anomaly and disease studies, and the two subjects were analyzed
within themselves. The included studies were categorized as classification, object detection,
and segmentation studies. Data such as the country of origin of the studies, the data
division strategy determining the number of training and test datasets used in the study,
and the field of dentistry were not mentioned.
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The distribution of the number of publications by year, type of task, type of anomaly/disease,
and dental imaging technique was visualized and analyzed. Considering the heterogeneity,
performance, and outcome measures of index and reference tests for quality assessment,
meta-analysis was not performed as the results were largely unsuitable for heterogeneity
tests. Instead, a separate shortlist was created by selecting studies that performed tests on
human-AI comparison among the included studies for quality assessment. From these stud-
ies, data on reference datasets, statistical significance tests, diagnostic performance results,
diagnostic time, and the impact of AI performance were extracted and analyzed. Further
analysis, including the clinical significance of deep learning, was performed narratively
alongside descriptive statistics.

3. Results

According to the search results, a total of 1997 records were identified, including 1860
from Google Scholar and 137 from PubMed. After removing duplicates from these records,
545 studies that were not full-text research articles (n = 497) and not related to dental health
topics (n = 48) were excluded, and 296 records were scanned. According to the screening
results, 101 studies that met the eligibility criteria were included in the systematic review.
Of the included studies, 22 are on dental anomalies (Table 3), and 79 are on dental disease
(Table 4). Figure 2 presents the search results in detail according to the PRISMA-2020
flowchart.

Figure 2. Search results according to the PRISMA-2020 flowchart.
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Table 3. Summary of studies on deep learning diagnosis of dental anomalies.

Author, Year,
Reference Anomaly Image Type Dataset Size Method Primary Performance

Metrics and Values (%)
Other Performance

Metrics
Explainable AI

Method

Classification

Ahn et al., 2021, [21] Mesiodens Panoramic 1100 InceptionResNetV2 ACC: 92.40 Precision, Recall, F1
score, AUC Grad-CAM

Kheraif et al., 2019, [44]

Supernumerary, Number
teeth, Jaws position,

Structure, Restoration,
Implants, Cavities

Panoramic 1500 Hybrid Graph Cut
Segmentation + CNN ACC: 97.07 Precision, Recall, F1

score, SPEC -

Mine et al., 2022, [45] Supernumerary Panoramic 220 VGG16 ACC: 84.00 SEN, SPEC, AUC -

Okazaki et al.,
2022, [46]

Supernumerary,
Odontomas Panoramic 150 AlexNet ACC: 70.00 Precision, SEN,

F1 score -

Ragodos et al.,
2022, [47]

Supernumerary, Rotation,
Agenesis, Mammalons,
Microdontia, Impacted,

Hypoplasia, Incisal Fissure,
Hypocalcification,

Displaced

Intraoral photos 38,486 ResNet18 AUC for supernumerary
class: 57.10

Precision, Recall,
F1 score Grad-CAM

Aljabri et al., 2022, [48] Maxillary canine
impaction Panoramic 416 InceptionV3 ACC: 92.59 Precision, Recall,

F1 score, SPEC Grad-CAM

Liu et al., 2022, [49] Ectopic eruption of
maxillary first molars Panoramic 1580 CNN-based Fusion Model SPEC: 86 SEN, F1 score,

PPV, NPV Grad-CAM

Askar et al., 2021, [50] White spot lesions,
Hypomineralized lesions Intraoral photos 434 SqueezeNet ACC: 84.00 SEN, SPEC, F1 score,

AUC, PPV, NPV Grad-CAM

Schönewolf et al.,
2022, [51]

Molar-incisor-
hypomineralization,
Enamel breakdown

Intraoral photos 3241 ResNeXt-101 ACC: 95.20 SEN, SPEC, AUC,
PPV, NPV Grad-CAM
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Table 3. Cont.

Author, Year,
Reference Anomaly Image Type Dataset Size Method Primary Performance

Metrics and Values (%)
Other Performance

Metrics
Explainable AI

Method

Alevizakos et al.,
2022, [52]

Molar-incisor-
hypomineralization,

Amelogenesis imperfecta,
Dental fluorosis, White

spot lesions

Intraoral photos 462 DenseNet121 ACC: 92.86 Loss -

Detection

Ha et al., 2021, [53] Mesiodens Panoramic 612 YOLOv3 ACC: 96.20 SEN, SPEC -

Jeon et al., 2022, [54] Mesiodens Periapical 720 EfficientDetD3 ACC: 99.20 SEN, SPEC -

Dai et al., 2023, [55] Mesiodens Panoramic 850 Authors Specific
CNN: DMLnet ACC: 94.00 SEN, SPEC, mAP -

Kuwada et al.,
2020, [56] Supernumerary Panoramic 550 DetectNet AUC: 96.00 Precision, Recall, F1

score, ACC -

Celik, 2022, [57] Third molar impacted teeth Panoramic 440 YOLOv3 mAP: 96.00 IoU, ACC, Precision,
Recall -

Başaran et al.,
2022, [58]

Impacted tooth, Residual
root, and eight

fine-grained
dental anomalies

Panoramic 1084 Faster R-CNN
InceptionV2 (COCO)

SEN for Impacted
class: 96.58

TP, FP, FN, Precision,
F1 score -

Lee et al., 2022, [59]

Supernumerary, Impacted,
Residual root, and 14

fine-grained
dental anomalies

Panoramic 23,000 Faster R-CNN SEN: 99.00 Precision, SPEC -

Segmentation

Kim et al., 2022, [60] Mesiodens Panoramic 988 DeepLabV3plus +
InceptionResNetV2

ACC: DeepLabV3plus
+: 83.90,

InceptionResNetV2:
97.10

IoU, MeanBF score,
Precision, Recall,

F1 score
Grad-CAM
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Table 3. Cont.

Author, Year,
Reference Anomaly Image Type Dataset Size Method Primary Performance

Metrics and Values (%)
Other Performance

Metrics
Explainable AI

Method

Ariji et al., 2022, [61] Third molar impacted
teeth Panoramic 3200 U-Net DSC: 83.10 JSC, SEN -

Imak et al., 2023, [62] Impacted tooth Panoramic 304

Authors Specific CNN:
ResMIBCU-Net: an

encoder–decoder network
with residual blocks,

modified inverted residual
block, and bi-directional

ConvLSTM

ACC: 99.82 IoU, Recall, F1 score -

Zhu et al., 2022, [63] Ectopic eruption of first
permanent molars Panoramic 285 nnU-Net ACC: 99.00 DSC, IoU, Precision,

SEN, SPEC, F1 score -

Duman et al., 2023, [64] Taurodont Panoramic 434 U-Net SEN: 86.50 TP, FP, FN, Precision,
F1 score -

ACC, Accuracy; AUC, Area Under the ROC Curve; CAM, Class Activation Mapping; CBCT, Cone Beam Computed Tomography; CNN, Convolutional Neural Network; DSC, Dice
Similarity Coefficient; FN, False Negative; FP, False Positive; Grad-CAM, Gradient-weighted Class Activation Mapping; IoU, Intersection over Union; JSC, Jaccard Similarity Coefficient;
mAP, mean Average Precision; NILT, Near-Infrared-Light Transillumination; NPV, Negative Predictive Value; OPG, Or-thopantomogram; PPV, Positive Predictive Value; SEN, Sensitivity;
SPEC, Specificity; TMJOA, Temporomandibular Joint Osteoarthritis; TP, True Positive; YOLO, You Only Look Once.

Table 4. Summary of studies on deep learning diagnosis of dental diseases.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Classification

Megalan Leo and
Kalpalatha Reddy, 2020, [65] Dental caries Bite viewing 480 InceptionV3 ACC: 86.70 - -

Wang et al., 2020, [66] Dental caries, Dental plaque Intraoral photos 7200 Authors Specific CNN
ACC: Dental caries:

95.30, Dental
plaque: 95.90

SEN, SPEC -
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Table 4. Cont.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Schwendicke et al.,
2020, [67] Dental caries NILT 226 ResNet18 ACC: 69.00 SEN, SPEC, AUC,

PPV, NPV CAM

Megalan Leo and
Kalpalatha Reddy, 2021, [68]

Dental caries: Enamel, Dentin,
Pulp, Root lesions Bite viewing 480 Hybrid Neural Network

(HNN) ACC: 96.00 - -

Vinayahalingam et al.,
2021, [69] Dental caries Panoramic 400 MobileNetV2 ACC: 87.00 SEN, SPEC, AUC CAM

Singh and Sehgal, 2021, [70] G.V Black dental caries Periapical 1500 CNN-LSTM ACC: 96.00 Precision, SEN, SPEC, F1
score, G-mean, AUC -

Bui et al., 2022, [71] Dental caries Panoramic 95 Pretrained CNNs-SVM ACC: 93.58 SEN, SPEC, F1 score,
PPV, NPV -

Vimalarani and
Ramachandraiah, 2022, [26] Dental caries Bite viewing 1000 Pervasive deep

gradient-based LeNet ACC: 98.74 SEN, SPEC, ER, PPV, NPV -

Panyarak et al., 2023, [72] Dental caries Bite viewing 2758 ResNet152 ACC: 71.11 SEN, SPEC, CR, AUC CAM

Haghanifar et al., 2023, [73] Dental caries Panoramic 470

Authors Specific CNN:
PaXNet: Ensemble

transfer learning and
capsule classifier

ACC: 86.05 Loss, Precision, Recall,
F0.5 score Grad-CAM

Zhou et al., 2023, [74] Dental caries Panoramic 304 Swin Transformer ACC: 85.57 Precision, Recall, F1 score -

Ezhov et al., 2021, [75] Dental caries, Periapical
lesion, Periodontal bone loss CBCT 1346 U-Net + DenseNet SEN: 92.39 SPEC -

Rajee and Mythili, 2021, [76]
Dental caries, Periapical

infection, Periodontal, and
Pericoronal diseases

Periapical, Panoramic 2000
Curvilinear Semantic

DCNN+
InceptionResNetV2

ACC: 94.51 MCC, DSC, JSC, ER,
Precision, Recall, SPEC -

Pauwels et al., 2021, [77] Periapical lesion Periapical 280 Authors Specific CNN SEN: 87.00 SPEC, AUC -

Calazans et al., 2022, [78] Periapical lesion CBCT 1000 Siamese Network +
DenseNet121 ACC: 70.00 SPEC, Precision, Recall,

F1 score -

Sankaran, 2022, [79] Periapical lesion Panoramic 1500
Improved Multipath

Residual CNN
(IMRCNN)

ACC: 98.90 SEN, SPEC, Precision,
F1 score -

Li et al., 2021, [22] Dental apical lesions Periapical 476 Authors Specific CNN ACC: 92.50 Loss -

Chuo et al., 2022, [80] Dental apical lesions Periapical 760 AlexNet ACC: 96.21 - -
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Table 4. Cont.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Li et al., 2022, [81] Dental caries, Periapical
periodontitis Periapical 4129 Modified ResNet18

F1 score: Dental caries:
82.90, Periapical

periodontitis: 82.80

SEN, SPEC, AUC,
PPV, NPV Grad-CAM

Liu et al., 2022, [82] Dental caries, Periapical
periodontitis, Periapical cysts Periapical 1880 DenseNet121 ACC: 99.50 SEN, SPEC, PPV, NPV CAM

Park et al., 2023, [27] Calculus and Inflammation Optical Color Images 220 YOLOv5 + Parallel
1D CNN ACC: 74.54 - -

Jaiswal and Bhirud,
2023, [83] Erosive wear, Periodontitis OPG 500 CNN with Antlion

Optimization ACC: 77.00 Precision, Recall, F1 score -

Chauhan et al., 2023, [84] Dental pulpitis Periapical 428 CNN-Fuzzy logic ACC: 94.00 SEN, SPEC, Precision, F1
score, MCC Grad-CAM

Chang et al., 2020, [85] Periodontal bone loss,
Periodontitis Panoramic 330 Mask R-CNN + CNN Pixel ACC: 92.00 DSC, JSC -

Krois et al., 2019, [86] Periodontal bone loss Panoramic 85 Authors Specific CNN ACC: 81.00 SEN, SPEC, F1 score,
AUC, PPV, NPV -

Kim et al., 2019, [87] Periodontal bone loss Panoramic 12,179
Authors Specific CNN:

DeNTNet: Deep Neural
Transfer Network

F1 score: 75.00 Precision, Recall,
AUC, NPV Grad-CAM

Lee et al., 2020, [88] Odontogenic cyst Panoramic, CBCT Panoramic 1140,
CBCT 986 InceptionV3 AUC: Panoramic: 84.70,

CBCT: 91.40 SEN, SPEC -

Rao et al., 2021, [89] Odontogenic cysts Microscopic
histopathology 2657 DenseNet169 ACC: 93.00 Loss, Precision, Recall,

F1 score -

Sivasundaram and Pandian,
2021, [90] Dental cyst Panoramic 1171

Morphology-based
Segmentation +
Modified LeNet

ACC: 98.50
CR, Precision, F1 score,

DSC, SEN, SPEC,
PPV, NPV

-

Lee et al., 2019, [91] Osteoporosis Panoramic 1268 Multicolumn DCNN AUC: 99.87 ACC, Precision, Recall,
F1‘score -

Lee et al., 2020, [92] Osteoporosis Panoramic 680 VGG16 AUC: 85.80 SEN, SPEC, ACC Grad-CAM

Sukegawa et al., 2022, [93] Osteoporosis Panoramic 778 EfcientNet Ensemble
Model ACC: 84.50 Precision, Recall, F1

score, AUC Grad-CAM

Tassoker et al., 2022, [94] Osteoporosis Panoramic 1488 AlexNet ACC: 81.14 SEN, SPEC, F1 score, AUC Grad-CAM

Nishiyama et al., 2021, [95] Mandibular condyle fractures Panoramic 400 AlexNet ACC: 84.50 SEN, SPEC, AUC -
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Table 4. Cont.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Yang et al., 2023, [96] Vertical root fractures CBCT 1641 ResNet50 AUC: 92.90 SEN, SPEC, ACC, PPV,
NPV CAM

Murata et al., 2019, [97] Maxillary sinusitis Panoramic 920 AlexNet ACC: 87.50 SEN, SPEC, AUC, -

Li et al., 2021, [98] Gingivitis Intraoral photos 625 CNN with Multi-task
Learning AUC: 87.11 SEN, SPEC, FPR, Grad-CAM

Choi et al., 2021, [23] TMJOA OPG 1189 ResNet ACC: 80.00 SEN, SPEC,
Cohen’s Kappa -

Jung et al., 2023, [99] TMJOA Panoramic 858 EfficientNetB7 ACC: 88.37 SEN, SPEC, AUC Grad-CAM

Kuwada et al., 2022, [100] Cleft palate Panoramic 491 DetectNet, VGG16 AUC: DetectNe: 95.00,
VGG16: 93.00 SEN, SPEC, ACC -

Al-Sarem et al., 2022, [101] Missing tooth CBCT 500 U-Net + DenseNet169 Precision: 94.00 ACC, Recall, F1 score,
Loss, MCC -

Detection

Zhang et al., 2022, [102] Dental caries Intraoral photos 3932 Single-Shot Detector AUC: 95.00 TPR -

Chen et al., 2021, [103] Dental caries, Periapical
periodontitis, Periodontitis Periapical 2900 Faster R-CNN

IoU: Dental caries:
71.59, Periapical

periodontitis: 69.42,
Periodontitis: 68.35

AP, AUC, Recall -

Kim et al., 2022, [104] Dental caries, Periapical
radiolucency, Residual root Panoramic 10,000 Fast R-CNN ACC: 90.00 SEN, SPEC, Precision -

Chen et al., 2022, [105] Dental caries Bite viewing 978 Faster R-CNN ACC: 87.00 SEN, SPEC, PPV, NPV -

Park et al., 2022, [106] Dental caries Intraoral photos 2348 Faster R-CNN ACC: 81.30 AUC, SEN, AP -

Fatima et al., 2023, [107] Periapical lesions Periapical 534 Lightweight Mask
R-CNN ACC: 94.00 IoU, mAP -

Jiang et al., 2022, [108] Periodontal bone loss Panoramic 640 U-Net + YOLOv4 ACC: 77.00 AP, Recall, F1 score -

Thanathornwong and
Suebnukarn, 2020, [109]

Periodontally compromised
teeth Panoramic 100 Faster R-CNN Precision: 81.00 SEN, SPEC, F1 score -

Kwon et al., 2020, [110] Odontogenic cysts Panoramic 1282 YOLOv3 ACC: 91.30 SEN, SPEC, AUC -

Yang et al., 2020, [111] Odontogenic cysts Panoramic 1603 YOLOv2 Precision: 70.70 Recall, ACC, F1 score -
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Table 4. Cont.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Ariji et al., 2019, [112]

Radiolucent lesions in the
mandible (Ameloblastomas,

Odontogenic keratocysts,
Dentigerous cysts, Radicular

cysts, Simple bone cysts)

Panoramic 285 DetectNet SEN: 88.00 IoU, FPR -

Kise et al., 2023, [113]

Mandibular radiolucent
cyst-like lesions (Radicular

cyst, Dentigerous cyst,
Odontogenic keratocyst,

Ameloblastoma)

Panoramic 310 DetectNet ACC: 89.00 SEN, SPEC -

Kuwana et al., 2020, [114] Inflamed maxillary sinuses,
Maxillary sinus cysts Panoramic 611 DetectNet ACC: 92.00 SEN, SPEC, FPR -

Watanabe et al., 2021, [115] Maxillary cyst-like lesions Panoramic 410 DetectNet Precision: 90.00 Recall, F1 score -

Fukuda et al., 2020, [116] Vertical root fractures Panoramic 300 DetectNet Precision: 93.00 Recall, F1 score -

Son et al., 2021, [117] Mandibular Fractures Panoramic 420 YOLOv4 Precision: 98.50 Recall, F1 score, -

Alalharith et al., 2020, [28] Gingivitis Intraoral photos 134 Faster R-CNN ACC: 100 Recall, mAP -

Lee et al., 2020, [118] TMJOA CBCT 3514 Single-Shot Detector ACC: 86.00 Precision, Recall, F1 score -

Park et al., 2022, [119] Missing tooth Panoramic 455 Faster R-CNN mAP: 59.09 AP, IoU -

Segmentation

Casalegno et al., 2019, [25] Dental caries NILT 217 U-Net mIoU: 72.70 AUC -

Khan et al., 2021, [120]
Dental caries, Alveolar bone

recession, Interradicular
radiolucencies

Periapical 206 U-Net mIoU: 40.20 DSC, Precision, Recall,
NPV, F1 score -

Cantu et al., 2020, [121] Dental caries Bite viewing 3686 U-Net ACC: 80.00 SEN, SPEC, PPV, NPV,
MCC, F1 Score -

Bayrakdar et al., 2022, [122] Dental caries Bite viewing 621 U-Net SEN: 81.00 Precision, F1 score -

You et al., 2020, [123] Dental plaque Intraoral photos 886 DeepLabV3+ mIOU: 72.60 - -
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Table 4. Cont.

Author, Year, Reference Disease Image Type Dataset Size Method Primary Performance
Metrics and Values (%)

Other Performance
Metrics

Explainable AI
Method

Lee et al., 2021, [124] Dental caries Bite viewing 304 U-Net Precision: 63.29 Recall, F1 score, PPV -

Lian et al., 2021, [125] Dental caries Panoramic 1160

Caries detection:
nnU-Net, Caries

severity detection:
DenseNet121

IoU: nnU-Net: 78.50,
ACC: DenseNet121:

95.70

DSC, Precision, Recall,
NPV, F1 score -

Zhu et al., 2022, [126] Dental caries Panoramic 1159 Authors Specific CNN:
CariesNet DSC: 93.64 ACC, Precision, Recall, F1

score -

Ari et al., 2022, [127] Dental caries, Periapical lesion Periapical 1169 U-Net
SEN: Dental caries:

82.00, Periapical lesion:
92.00

Precision, F1 Score -

Dayı et al., 2023, [128] Dental caries Panoramic 504 Authors Specific CNN:
DCDNet F1 score: 61.86 Precision, Recall, c -

Rajee and Mythili,
2023, [129] Dental caries Panoramic 2000 Curvilinear Semantic

DCNN ACC: 93.7 DSC, JSC, TPR, FPR -

Kirnbauer et al., 2022, [130] Periapical lesion CBCT 144 U-Net ACC: 97.30 SEN, SPEC, FNR, DSC -

Song et al., 2022, [131] Dental apical lesions Panoramic 1000 U-Net IoU: 82.80 Precision, Recall, F1 score -

Chen et al., 2023, [132] Periodontal bone loss Periapical 8000 U-Net-based Ensemble
Model ACC: 97.00 AP -

Endres et al., 2020, [133]
Periapical inflammation,

Granuloma, Cysts,
Osteomyelitis, Tumor

Panoramic 2902 U-Net PPV: 67.00 TPR, AP, F1 score -

Yu et al., 2022, [134] Odontogenic cysts Panoramic 10,872 MoCoV2 + U-Net ACC: MoCoV2: 88.72,
IoU: U-Net: 70.84

Precision, F1 score, SEN,
SPEC Grad-CAM

Chau et al., 2023, [135] Gingivitis Intraoral photos 567 DeepLabV3plus SEN: 92.00 SPEC, IoU -

Wang et al., 2021, [136] Cleft lip and palate CBCT 60 3D U-Net DSC: 77.00 - -

Bayrakdar et al., 2021, [24] Missing tooth CBCT 75 3D U-Net Right percentages: 95.30 False percentages -

ACC, Accuracy; AP, Average Precision; AUC, Area Under the ROC Curve; CAM, Class Activation Mapping; CBCT, Cone Beam Computed Tomography; CNN, Convolutional Neural
Network; CR, Classification Rate; DSC, Dice Similarity Coefficient; ER, Error Rate; FN, False Negative; FNR, False Negative Rate; FP, False Positive; FPR, False Positive Rate; Grad-CAM,
Gradient-weighted Class Activation Mapping; IoU, Intersection over Union; JSC, Jaccard Similarity Coefficient; LSTM, Long Short-Term Memory; mAP: mean Average Precision; MCC,
Matthews Correlation Coefficient; mIoU, mean Intersection over Union; NILT, Near-Infrared-Light Transillumination; NPV, Negative Predictive Value; OPG, Orthopantomogram; PPV,
Positive Predictive Value; R-CNN, Region-based Convolutional Neural Network; SEN, Sensitivity; SPEC, Specificity; SSD, Single Shot Detector; SVM, Support Vector Machine; TMJOA,
Temporomandibular Joint Osteoarthritis; TN, True Negative; TNR, True Negative Rate; TP, True Positive; TPR, True Positive Rate; YOLO, You Only Look Once.
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Figure 3 shows the distribution of publications by years, tasks performed, anomaly/disease
applications, and dental imaging techniques. When the distribution of the number of
publications in 2019–May 2023 is examined, the highest number belongs to 2022, with
14 anomalies and 23 diseases. Although 2023 (n = 17) is not yet finished, the number of
publications is more than double the number of publications in 2019 (n = 7), and the number
of publications has increased yearly. The most common task performed in diagnosing
dental anomaly/disease is classification (n = 51). Another common task performed after
classification is object detection in anomaly diagnosis (n = 7) and segmentation in disease
diagnosis (n = 19). The most common diagnostic studies, mainly dental caries and plaques
(n = 31) are on periodontal diseases (n = 23), cysts, and tumors (n = 11). Cleft lip and
palate (n = 2), temporomandibular joint osteoarthritis (TMJOA), gingivitis, and missing
teeth (n = 3) are the least researched diseases in the diagnosis of dental disease with deep
learning. Apart from these studies, there are also studies on the diagnosis of inflammation,
osteoporosis, and fractures. Since mesiodens are a type of supernumerary teeth, the
most common type of anomaly in which deep learning methods are used for diagnosis
is supernumerary teeth (n = 11). Other common types of anomalies examined were
impacted teeth (n = 6), hypomineralization (n = 4), and ectopic eruption (n = 2). Three
other anomaly applications in Figure 3 are diagnosing taurodont [64], maxillary canine
impaction [48], and odontomas [46]. Another study is on the classification of ten different
types of anomalies [47].

Dataset sizes ranged from 60 (CBCT) [136] to 12,179 (panoramic) [87] images. The
most commonly used image types in dental disease studies are panoramic radiographs
(n = 38), followed by periapical radiographs (n = 13), CBCT (n = 9), bite viewing radiographs
(n = 8), and intraoral photographs (n = 7). Orthopantomogram (OPG, n = 2), NILT (n = 2),
optical color images (n = 1), and microscopic histopathology (n = 1) are other dental
imaging techniques using deep learning for diagnosis. There are no studies on image types
other than panoramic radiographs (n = 17), intraoral photographs (n =4), and periapical
radiographs (n = 1) in the diagnosis of dental anomalies. One study evaluated both
CBCT scans and panoramic radiographs [88], while another evaluated both periapical and
panoramic radiographs [76].

The most commonly used deep learning methods for the classification task in dental
anomaly diagnosis are using pre-trained CNN models by fine-tuning (transfer learning) or
modifying them. InceptionResNet, VGG16, AlexNet, InceptionV3, SqueezeNet, ResNet,
and DenseNet are CNN models used as solution methods. In one study [44], Hybrid graph
cut segmentation was applied to separate the background and anatomy in panoramic
radiography images, and then the preprocessed images were classified with CNN. YOLO
(n = 2), Faster R-CNN (n = 2), DetectNet, and EfficientDetD3 models were used for object
detection tasks in dental anomaly diagnosis. In one study [55], the authors designed a new
DMLnet model based on the YOLOv5 architecture for automatically diagnosing mesiodens
on panoramic radiographs. Generally, U-Net (n = 3) or modified U-Net (n = 1) architectures
are used for the segmentation task. In a study for the diagnosis of mesiodens [60], varied
tasks were performed by segmentation with the DeepLabV3 model and classification with
the InceptionResNetV2 model.

While more diverse than the classification methods used for dental anomaly diagnosis,
the most commonly used deep learning method is the same for disease diagnosis, with
models designed with pre-trained CNNs. ResNet (n = 5), DenseNet (n = 5), and AlexNet
(n = 4) are the most commonly used pre-trained CNNs, with VGG (n = 2), Inception (n = 2),
EfficientNet (n = 2), LeNet (n = 2), and MobileNet (n = 1) also used. Another common
method is custom CNN models designed by the authors (n = 6). In addition to these
methods, hybrid methods combined with two different algorithms were also used. CNN-
LSTM [70], CNN-SVM [71], Siamese Network-DenseNet121 [71], and CNN-fuzzy logic [84]
are hybrid models using. In a study [74], a swine transformer, one of the transformer
types shown to compete with CNNs recently, was used. Faster R-CNN (n = 7), DetectNet
(n = 5), YOLO (n = 4), Single-Shot Detector (SSD, n = 2), and Mask R-CNN (n = 1) were



Diagnostics 2023, 13, 2512 16 of 28

used for the object detection task. U-Net (n = 14) and DeepLabV3+ (n = 2) were the most
commonly used architectures for the segmentation task in disease diagnosis as well as in
dental anomaly diagnosis. Two-stage methods combining different tasks are frequently
proposed for diagnosing dental diseases. After applying segmentation as an image prepro-
cessing in the first stage, the studies that involved classification in the second stage used
U-Net + DenseNet (n = 2), Mask R-CNN + CNN, Morphology-based Segmentation + Modi-
fied LeNet, Curvilinear Semantic DCNN + InceptionResNetV2 methods. In a study [27], a
parallel 1D CNN was used as a YOLOv5 classifier as an image preprocessing method. To
optimize the weights, methods that combine CNN with different optimization algorithms,
such as antlion [83] and pervasive deep gradient [26], have also been proposed.

Figure 3. Distribution of publications by years, tasks performed, anomaly/disease applications, and
dental imaging techniques.

In sixty studies, the ACC metric was used as the primary performance measurement
method. While the ACC metric was measured in nine studies, it was never used in thirty-
two. In a study using Faster R-CNN to diagnose gingivitis from intraoral photographs, the
highest ACC value of 100% was obtained [26]. The lowest ACC value of 69% was obtained
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in a study using ResNet18 to diagnose dental caries on NILT images [67]. After ACC, the
most frequently used performance measurement method is SEN (SEN = recall = TPR),
which was used in eighty-seven studies, nine of which were the primary metric. The values
obtained in studies using SEN as the primary metric range from 81–99% [59,122]. Another
frequently used metric is precision (precision = PPV). Precision was used as a performance
measurement method in sixty-seven studies, of which nine were the primary metric. As
the lowest value, the mean average precision (mAP) value of 59.09% was reached in a
study where Faster R-CNN was recommended for detecting missing teeth on panoramic
radiographs [119]. The highest precision value of 98.50% was achieved in a study that
proposed YOLOv4 for detecting mandibular fractures on panoramic radiographs [117].
Another performance measurement method used as a primary metric is the Area under the
ROC Curve (AUC). AUC was used in thirty studies, nine of which were the primary metric,
and gave results in the 57.10–99.87% range [47,91]. F score (n = 47) and SPEC (n = 48) are
among other frequently used metrics. In addition, some studies use Intersection over Union
(IoU), negative predictive value (NPV), Dice similarity coefficient (DSC), Jaccard similarity
coefficient (JSC), Matthews correlation coefficient (MCC), false positive rate (FPR), loss,
error rate (ER), and Classification rate (CR) as performance measurement methods.

Of the 101 studies, 22 mentioned the topic of explainable AI. Five of these studies
described the class activation heat map (CAM) without detailing their explainable AI
method, while the others used gradient-weighted class activation mapping (Grad-CAM).

In 21 studies, human and AI performances were tested and compared. The reference
data, comparative tests, and performance results of these studies are summarized in
Table 5. In these studies, test datasets prepared for the reference dataset were also used
in comparative tests, and the size of the test datasets varied between 25 and 800 [86,87].
In one study [47], a different test dataset of 7697 images was used to test the model’s
performance, and a different test dataset of 30 images was used to compare the model’s
performance with the human’s performance. In one study [77], validation performance
was used for tests for which no test dataset was created. In 14 studies, reference datasets
were annotated by physicians experienced in oral and dental health, such as pediatric
specialists (PS), general practitioners (GP), oral and maxillofacial radiologists (OMFR),
surgeons (OMFS), and endodontic specialists (ES). In 10 studies, more than one specialist
was given the task of explanation to ensure the reliability of the reference dataset. In two
studies, dentist-trained researchers annotated the reference dataset [74,123]. In two studies,
CBCT data were referenced rather than annotated, as images from retrospective databases
were already labeled [23,97].

In all studies except for two, comparative tests were performed by comparing the
performance results of a group of human auditors on the test data with the performance
results of the model. In addition to this test, in two studies, the performance of the AI-
unaided group and the AI-aided group were compared, and the effect of the AI model on
the diagnostic performance of the specialists was measured [75,124]. Statistical analysis
tests such as the Kruskal–Wallis test, t-tests, Mann–Whitney-u test, and Kappa statistics,
especially McNemar’s χ2 test, were used to measure the significance of performance
differences between specialists and AI models. Statistical significance was not measured in
one study [87]. Of the eighteen studies whose p-value was calculated, thirteen reported
that the performance difference was significant (p < 0.05), and five were insignificant. In
addition to test performance, test times were also measured in seven studies. In only one
of these studies, the AI model provided a diagnosis later than the specialist [74]. In other
studies, the authors only compared the diagnostic performances, stating that the diagnostic
time of the AI model would be shorter than that of the specialists. Except for six studies,
the diagnostic performance of AI models proposed in other studies exceeded that of human
auditory groups. In four of the six studies, AI lags behind the experts by a small margin,
and in the other two studies, the performance gap is quite significant [21,47].
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Table 5. Summary of studies involving human-AI comparisons.

Author, Year,
Reference Test Dataset Reference Dataset

Annotators
Comparator

Dentists
Statistical

Significance Test
Diagnostic

Performance (%) Diagnostic Time
AI Performance

(+) Effective,
(−) Noneffective

Ahn et al., 2021, [21] Panoramic, 100 1 PS 6 GP, 6 PS Kruskal–Wallis test,
p < 0.05

(ACC) GP: 95.00,
PS: 99.00,

AI Model: 88.00

GP: 811.8 s,
PS: 375.5 s,

AI Model: 1.5 s

Performance: −,
Time: +

Ragodos et al.,
2022, [47]

Intraoral photos,
Reference test size
7.697, Comparative

test size 30

1 SD 1 SD
Pre-calibration
performance

measurements

(F1 score for
mammalons class)

SD: 85.70, AI Model:
50.60

SD: 1 year,
AI Model: 16 min for

the entire dataset

Performance: −,
Time: +

Liu et al., 2022, [49] Panoramic, 100 3 PS 3 PS Cochran test,
p = 0.114

(SPEC) PS1: 88.00,
PS2: 83.00, PS3: 87.00,

AI Model: 86.00
PS: -, AI Model: 1 s Performance: −,

Time: +

Zhu et al., 2022, [63] Panoramic, 65 1 OMFR, 2 PS 2 GP, 1 PS McNemar’s χ2 test,
p < 0.001

(ACC) GP1: 82.50,
GP2: 83.30, PS: 77.50,

AI Model: 99.00
- Performance: +

Zhou et al., 2023, [74] Panoramic, 30
An experienced data
annotation worker
trained by dentists

2 SD Kappa statistic (ACC) SD: 88.42, AI
Model: 85.57

SD: 64.5 s,
AI Model: 68.97 s

Performance: −
Time: −

Ezhov et al.,
2021, [75]

CBCT, 600 OMFR 4 OMFR Student’s t-test,
p < 0.05

(SEN) OMFR1: 94.11,
OMFR2: 94.38,
OMFR3: 93.18,

OMFR4: 93.37, AI
Model: 92.39

- Performance: −

CBCT, 40 OMFR 12 AI-aided group,
12 AI-unaided group

Mann–Whitney-u
test, p < 0.05

(SEN) AI-unaided
group: 76.72,

AI-aided group:
85.37

AI-unaided group:
18.74 min, AI-aided

group: 17.55 min

Performance: +,
Time: +

Pauwels et al.,
2021, [77]

Periapical,
112 (Val. dataset) 3 OMFR 3 OMFR Quadratic weighted

kappa
(SEN) OMFR: 58.00,

AI Model: 87.00 - Performance: +

Li et al., 2022, [81] Periapical, 300 3 SD 3 JD Kappa statistic
(F1 score) JD1: 61.29,
JD2: 61.87, JD3: 65.39,

AI Model: 82.85
- Performance: +
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Table 5. Cont.

Author, Year,
Reference Test Dataset Reference Dataset

Annotators
Comparator

Dentists
Statistical

Significance Test
Diagnostic

Performance (%) Diagnostic Time
AI Performance

(+) Effective,
(−) Noneffective

Chang et al.,
2020, [85] Panoramic, 34 OMFR 3 OMFR (1 Professor,

1 Fellow, 1 Resident)

Intraclass Correlation
Coefficient (ICC),

p < 0.01

(ICC) AI
Model-Professor:

86.00, AI
Model-Fellow: 84.00,
AI Model-Resident:

82.00

- Performance: +

Krois et al., 2019, [86] Panoramic, 25 3 SD 6 SD (1 PS, 1 ES,
4 GP)

Welch’s t-test,
p = 0.067

(ACC) SD average:
76.00,

AI Model: 81.00
- Performance: +

Kim et al., 2019, [87] Panoramic, 800 5 SD Same 5 SD -
(F1 score) SD

average: 69.00,
AI Model: 75.00

- Performance: +

Murata et al.,
2019, [97] Panoramic, 120 CBCT 2 OMFR, 2 JD McNemar’s χ2 test,

p < 0.05

(ACC) OMFR: 89.60,
JD: 76.7, AI Model:

87.50

OMFR, JD: -,
AI Model: 9 s

Performance: +,
Time: +

Choi et al., 2021, [23] OPG, 450 CBCT 1 SD McNemar’s test,
p < 0.05

(ACC) SD: 81.00,
AI Model: 80.00 - Performance: −

Kuwada et al.,
2022, [100] Panoramic, 60 - 2 OMFR McNemar’s χ2 test,

p < 0.05

(AUC) OMFR1: 70.00,
OMFR2: 63.00,

AI Models: 95.00, 93.00
- Performance: +

Chen et al.,
2022, [105] Bite viewing, 160 2 ES, 1 OMFR 2 JD McNemar’s χ2 test,

p < 0.05
(ACC) JD: 82.00,
AI Model: 87.00 - Performance: +

Yang et al.,
2020, [111] Panoramic, 181 - 3 OMFS, 2 GP Kruskal–Wallis test,

p = 0.77

(Precision) OMFS:
67.10, GP: 65.80,
AI Model: 70.70

OMFS and GP
average time:

33.8 min, AI Model: -

Performance: +,
Time: +

Cantu et al.,
2020, [121] Bite viewing, 141 3 SD 7 SD

Two-sided paired
t-test,

p < 0.05

(ACC) SD average:
71.00, Model: 80.00 - Performance: +
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Table 5. Cont.

Author, Year,
Reference Test Dataset Reference Dataset

Annotators
Comparator

Dentists
Statistical

Significance Test
Diagnostic

Performance (%) Diagnostic Time
AI Performance

(+) Effective,
(−) Noneffective

You et al., 2020, [123]
Intraoral photos, 98 A researcher 1 PS Paired t-test,

p > 0.05
(mIOU) PS: 69.50,
AI Model: 73.60 - Performance: +

Intraoral photos, 102 A researcher 1 PS Paired t-test,
p > 0.05

(mIOU) PS: 65.20,
AI Model: 72.40 - Performance: +

Lee et al., 2021, [124] Bite viewing, 50 2 SD 3 SD
Generalized

estimating equations,
p < 0.05

(SEN) AI-unaided
group: SD1: 85.34,
SD2: 85.86, SD3:
69.11, AI-aided

group: SD1: 92.15,
SD2: 93.72,
SD3: 79.06,

AI Model: 83.25

- Performance: +

Lian et al., 2021, [125] Panoramic, 89 4 SD 6 SD McNemar’s χ2 test,
p < 0.05

Segmentation (IoU)
SD average: 69.60, AI

Model: 78.50;
Classification (ACC)
SD average: 91.50,
AI Model: 95.70

- Performance: +

Endres et al.,
2020, [133] Panoramic, 102 1 OMFS 24 OMFS

Wilcoxon
signed-rank test,

p < 0.05

(PPV) OMFS average:
69.00,

AI Model: 67.00
-

Performance: + (The
AI model

outperformed 14 of
the 24 OMFS)

Accuracy; AUC, Area Under the ROC Curve; CBCT, Cone Beam Computed Tomography; ES, Endodontic Specialist; GP, General Practitioner; ICC, Intraclass Correlation; JD, Junior
Dentist; OMFR, Oral and Maxillofacial Radiologist; OMFS, Oral and Maxillofacial Surgeon; OPG, Orthopantomogram; PPV, Positive Predictive Value; PS, Pediatric Specialist; SD,
Specialist Dentist; SEN, Sensitivity; SPEC, Specificity.



Diagnostics 2023, 13, 2512 21 of 28

4. Discussion

This study evaluated the last five years of literature research on the diagnosis of
dental anomalies and diseases using various deep learning methods, mainly CNNs, using
a systematic review. According to the results of this evaluation, some findings that need to
be discussed have emerged.

Even if it is not as much as the diagnostic applications in the field of medicine, the
results of the searches made in two databases, Google Scholar, and PubMed, show the
records of 1997 for the last five years, which shows that deep learning is experiencing
a golden age in the diagnostic applications in dentistry. Only 137 of these records were
available on PubMed, which is often an essential medical and dental research resource.
This case indicates that a significant part of the research identified is not from dentistry but
from technical sciences and has been published differently.

Over the years, deep learning has grown in popularity as a research topic in diag-
nosing dental diseases, given the number of studies shortlisted before the first half of
2023. However, diagnosing dental anomalies with deep learning has yet to be sufficiently
investigated (n = 22). This article is the first systematic review of dental anomalies. Due to
the rarity of dental anomalies compared to other dental diseases, the scarcity of data has
made research on this subject with deep learning algorithms rare [137,138]. In addition,
it is no coincidence that the most common oral and dental disease reported worldwide
by the WHO is dental caries and that the studies included in the shortlist are primarily
focused on diagnosing dental caries (n = 31). Due to the working principle of deep learning
algorithms, the qualities of the data used, such as the number of images, quality, and an
expert’s explanation of the image, are very important compared to other AI algorithms.
These findings prove that deep learning has gained more space in the literature for diag-
nosing common worldwide diseases where it is easy to obtain quality data. In general,
the progress of the health sector in the world draws the boundaries of the field of AI in
medicine. Similar to this subject, panoramic radiographs are the most widely used imaging
technique in the field of oral and dental health worldwide due to their advantages over
others, and panoramic radiographs were used as data in more than half (n = 55) of the
studies included in the shortlist in this review.

Since classification is the most appropriate task type for disease diagnosis in general,
the most classification (n = 51) and the least segmentation (n = 24) task types were performed
in the studies included in the shortlist. Despite the fact that deep learning algorithms can
work with raw data, segmentation and object detection are used as preprocessing tools
applied to the data before classification in order to overcome the difficulties of dental
images. Although they are used as individual or at least individualized architectures as
deep learning algorithms, standardized architectures such as pre-trained CNN models,
Faster R-CNN, YOLO, and U-Net have been used in most studies. Considering the existence
of these architectures in the literature, it shows that deep learning and diagnostic studies in
dentistry lag behind other fields. The use of transformer architectures in only one study, a
relatively new field of research according to CNNs, indicates a possible delay in adopting
the latest architectures. Explainable AI methods are used to explain the decision-making
processes of models. Visualizing why and how deep learning models, defined as black box
AI models, make the diagnosis decision is vital to making the model’s accuracy, objectivity,
and results reliable. Of the 101 included studies, only 22 mentioned an explainable AI
method (Grad-CAM). Considering the clinical importance of deep learning diagnostic
studies, it is essential to include explainable AI methods in studies for reliability. In
addition, developing new and different explainable AI methods is very important.

Although the high performance of the proposed deep learning algorithms indicates
their reliability, appropriate metrics were not selected for their performance in the clinical
setting, and additional tests were not carried out. In some studies, only ACC was used
as a performance metric [27,65,68,80,123,136]. ACC class imbalance can be misleading in
existing problems. Likewise, the AUC is only partially informative when over- or under-
detection is unimportant. In problems involving such inequalities, additional metrics must
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be measured. Although PPV = precision, one of the metrics giving information about the
clinical benefit, was measured in 67 studies, NPV was measured in only 16 studies. In
addition to the limitations of the reported metrics, the number of studies applying tests
that provide information on clinical utility is very small. The number of studies comparing
human and AI is 21. In some of these studies, the number of explanatory experts forming
the reference data set is one [21,47,133]; in others, the researcher is used instead of an
expert as an explanatory [74,123]. Using more experts to overcome the limitations of
a single expert in creating reference datasets will increase reliability. In some studies,
performance measurements obtained with validation data have been reported instead of
creating a separate test dataset [77]. The validation phase is used to test the efficiency of
the hyperparameters of the deep learning model, and its use in the final testing phase may
make the reported results misleading. Only two studies test how deep learning affects
expert performance in AI and human benchmark tests (AI-unaided group-AI-aided group
comparison) [75,124]. In other studies, deep learning algorithms and the performance of
experts were compared, and it was hoped that deep learning performance would reach or
exceed that of experts. At this point, although the aim of using expert system applications
supported by AI algorithms as an auxiliary tool for experts is emphasized in almost all
studies, it is clear that tests suitable for this purpose need to be revised. As a result of this
inadequacy, it will take many years for research on the clinical applicability and ethical and
legal dimensions of AI algorithms to multiply. As every multidisciplinary task requires, the
cooperation of health institutions and experts with computer scientists is the most critical
factor in preventing this situation. Another vital solution factor may be defining a standard
set of tests and performance criteria for deep learning oral and dental health studies. An
open-access, standardized test dataset created by experts for each dental image type can
enable the performance of deep learning algorithms to be reliably evaluated and compared.

This systematic review article has some limitations. Since today’s databases and
publications are quite large, only two different databases were scanned for this review. The
selected articles were evaluated in line with the inclusion and exclusion criteria and the
boundaries drawn. Studies such as conferences, preprint articles, and book chapters were
excluded because the inclusion criteria were broad. The fact that some articles are not open
access or contain missing information that does not match the summary tables we have
created has limited the included studies. One reviewer performed the data extraction phase
from the included studies, and the shortlist presented in the article was only thoroughly
reviewed and checked by a second reviewer (a specialist dentist). A traditional systematic
review was used; meta-analyses were not conducted, and the results were quite broad. As
a result, the study findings were compiled narratively and according to a systematization
we designed, with the aim of guiding and further developing future studies in this field.

5. Conclusions

In this systematic review, deep learning diagnosis of dental anomalies and diseases
was discussed, and 101 studies included in the shortlist were analyzed and evaluated
with the limitations discussed. Deep learning algorithms show auspicious performance
in evaluating visual data for diagnosing dental anomalies and diseases. Applications of
deep learning in oral and dental health services can alleviate the workload of oral and
dental health professionals by allowing more comprehensive, reliable, and objectively
accurate image evaluation and disease detection, and can increase the chance of developing
countries reaching diagnosis and treatment by reducing the cost. In order to achieve these
advantages of deep learning, there seems to be a great need for the development of clinical
applications of deep learning studies in the field of oral and dental health, including the
definition of standard test datasets, testing procedures, and performance metrics.
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radiography using deep-learning artificial intelligence system. Oral Radiol. 2022, 38, 363–369. [CrossRef]
59. Lee, S.; Kim, D.; Jeong, H.G. Detecting 17 fine-grained dental anomalies from panoramic dental radiography using artificial

intelligence. Sci. Rep. 2022, 12, 5172. [CrossRef]
60. Kim, J.; Hwang, J.J.; Jeong, T.; Cho, B.-H.H.; Shin, J. Deep learning-based identification of mesiodens using automatic maxillary

anterior region estimation in panoramic radiography of children. Dentomaxillofacial Radiol. 2022, 51, 20210528.
61. Ariji, Y.; Mori, M.; Fukuda, M.; Katsumata, A.; Ariji, E. Automatic visualization of the mandibular canal in relation to an impacted

mandibular third molar on panoramic radiographs using deep learning segmentation and transfer learning techniques. Oral Surg.
Oral Med. Oral Pathol. Oral Radiol. 2022, 134, 749–757. [CrossRef]
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